الجمهورية الجزائرية الديمقراطية الشعبية PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Canvas of Setting in Conformity

TRAINING OFFER

L.M.D.

ACADEMIC LICENSE

First year common base (L1)

Domain: Sciences of Matter (SM)

Establishment	Faculty	Department
University of Biskra	Faculty of Exact Sciences Natural and Life Sciences	Material Sciences

القسم	الكلية/ المعهد	المؤسسية
قسم علوم المادة	كلية العلوم الدقيقة و	جامعة محمد
	علوم الطبيعة و الحياة	خيضر بسكرة

Contents

I - Semestriel teaching organization sheets4
1- Semester 15
2- Semester 26
II - Organization sheets for teaching units7
III - Detailed program by subject16

Semestriel teaching organization sheets First year common base (L1)

Abbreviations:

TU: Teaching Unit

FTU: Fundamental Teaching Unit

MTU: Methodology Teaching Unit

DTU: Discovery Teaching Unit

TTU: Transversal Teaching Unit

C: Course

SHV: Semestriel Hourly Volume

WHV: Weekly Hourly Volume

PW(TP): Practical Work

TS (TD) : Tutorial series

1- Semester 1

	Course	SHV		WHV		Other*	C 66	Credits	Evaluation	n mode
Teaching units	Number	14-16 weeks	Lc	TS	PW	(14-16 weeks)	Coeff.		Continues	Exam
Fundamental Teaching units (FTU)										
FTU11		202h30	9h00	4h30			9	18	33	67
Mathematics 1/ Analysis & Algebra 1	F111	67h30	3h00	1h30	-	82h30	3	6	33	67
Physics 1/ Point mechanics	F112	67h30	3h00	1h30	-	82h30	3	6	33	67
Chemistry 1 / Structure of matter	F113	67h30	3h00	1h30	-	82h30	3	6	33	67
Methodology Teaching Unit (MTU)		<u> </u>						I		
MTU11		90h00	1h30		4h30		4	8	50	50
PW Mechanics	M111	22h30	-	-	1h30	27h30	1	2	50	50
PW Chemistry 1	M112	22h30	-	-	1h30	27h30	1	2	50	50
Computer science 1: office automation	M113									
& Web Technology (5 weeks) + Introduction to algorithms (10 weeks)		45h00	1h30	-	1h30	55h	2	4	50	50
Discovery teaching unit (DTU)										
DTE11 Choose a subject from the four subjects:		22h30	1h30				1	2		100
Simple physical systems	D111									
Discovery of university work methods	D111	22h30	1h30	_	_	27h30	1	2		100
Environment	D111	221130	mee			271100	-	-		100
Biotechnology	D111									
Transversal teaching unit (TTU)					1		1	i I		
TTU11		22h30	1h30				1	2		100
Foreign languages 1		22h30	1h30	-	-	27h30	1	2		100
Total Semester 1		337h30	12h00	6h00	4h30		15	30		

* Other = Complementary work in biannual consultation

2- Semester 2

Teaching units	Course	SHV	WH	V		Other*	C 66	Credits	Evaluatio	n mode
	Number	14-16 weeks	Lc	TD	PW	(14-16 weeks)	Coeff		Continues	Exam
Fundamental Teaching units (FTU)										
FTU21		202h30	9h00	4h30			9	18	33	67
Mathematics 2: Analysis and Algebra 2	F211	67h30	3h00	1h30	-	82h30	3	6	33	67
Physics 2 / Electricity	F212	67h30	3h00	1h30	-	82h30	3	6	33	67
Chimistry 2 / Thermodynamics and Chemical Kinetic	F213	67h30	3h00	1h30	-	82h30	3	6	33	67
Methodology Teaching Unit (MTU)										
MTU21		90h00	1h30		4h30		4	8	50	50
Practical Work (PW) in Electricity	M211	22h30	-		1h30	27h30	1	2	50	50
Practical Work (PW) in Chimistry 2	M212	22h30	-		1h30	27h30	1	2	50	50
Computer science 2 / Programming languages	M213	45h00	1h30		1h30	55h	2	4	50	50
Discovery teaching unit (DTU)				I	I	L	I		L	
DTU21 <i>Choose a subject from the four subjects:</i>	D211	22h30	1h30				1	2		100
Chemistry through basic applications										
Business economics		-								
		22h30	1h30	-	-	27h30	1	2		100
History of Sciences Renewable energies										
Transversal teaching unit (TTU)										
TTU21	T211	22h30	1h30				1	2	X	100
Foreign languages 2		22h30	1h30	-	-	27h30	1	2	X	100
Total Semester 2		337h30	12h00	6h00	4h30		15	30		

* Other = Complementary work in biannual consultation

II – Organization sheets for teaching units

(Establish a file per teaching unit TU)

Semester: 1

Fundamental Teaching units (FTU)

Distribution of the hourly volume of the TU and its subjects.	Course : 135h00 Tutorial series (TS) : 67h30 Practical Work (PW): - Personal work: 247h30
Credits and coefficients allocated to the TU and its subjects	TU: Coefficient = 9 Credits = 18 Subject 1: Mathematics 1/ Analysis & Algebra 1 Credits : 6 Coefficient : 3 Subject 2 : Physics 1/ Point mechanics Credits : 6 Coefficient : 3 Subject 3 : Chemistry 1/ Structure of matter Credits : 6 Coefficient : 3
Evaluation method (continuous or examination)	Continuous : 33% ; Exam : 67%
Description of teaching subjects	 Mathematics 1/ Analysis & Algebra 1 Acquisition of basic mathematical formalisms in Analysis and Algebra and their applications. Physics 1/ Point mechanics Acquisition of basic formalisms in material point mechanics and mathematical representations of physical phenomena linked to material point mechanics. Chemistry 1/ Structure of matter Acquisition of basic formalisms in chemistry, particularly in the structure of matter describing the atom and the chemical bond as well as the different migrations of electrons and the chemical elements of the periodic table.

TU : Methodology

Distribution of the hourly volume of the TU and its materials	Course : 22h30 Tutorial series (TS) : - Practical Work (PW): 67h30 Personal work: 110h00
Credits and coefficients allocated to the TU and its subjects	TU: Coefficient = 4 Credits = 8 Subject 1: PW (Practical work) / Mechanics Credits : 2 Coefficient : 1 Subject 2 : PW (Practical work) / Chemistry 1 Credits : 2 Coefficient : 1 Subject 3 : Computer science 1/ Algorithmic Credits : 4 Coefficient : 2
Evaluation method (continuous or examination)	Continuous : 50% ; Exam : 50%
Description of teaching subjects	 Practical work (PW) / mechanics Consolidation of theoretical knowledge acquired in Point Mechanics course (Physics 1). Manipulation of measuring equipment and visualization of phenomena linked to classical mechanics. Practical work / chemistry 1 Introduction to chemical handling while respecting safety rules. Learning basic practical chemistry work and handling measuring equipment. Computerscience 1: Office automation and algorithmic
	Computer basics - Basic concept of algorithm and methods of its construction.

Semester:1

TU: Discovery

	Course : 22h30
Distribution of the hourly volume of the	Tutorial series (TS) : -
TU and its materials	Practical Work (PW): 22h30
	Personal work : 27h30
	TU: Coefficient = 1 Credits = 2
Credits and coefficients allocated to the TU and its subjects	One (01) subject to choose from:
	Subject 1. Simple Divisional Sustains
	Subject 1: Simple Physical Systems
	Credits : 2
	Coefficient : 1
	Subject 2: Discovery of University Work Methods
	Credits : 2
	Coefficient : 1
	Subject 3 : <i>Environment</i>
	Credits : 2
	Coefficient : 1
	Subject 4 : Biotechnology
	Credits: 2
	Coefficient : 1
Evaluation method (continuous or	
Evaluation method (continuous or examination)	Exam : 100%
	Exam : 100%
examination)	Simple Physical Systems
	Simple Physical Systems Discover the applications of physical laws to simple
examination)	Simple Physical Systems
examination)	Simple Physical Systems Discover the applications of physical laws to simple systems which are the basis of many tools and machines.
examination)	Simple Physical Systems Discover the applications of physical laws to simple
examination)	Simple Physical Systems Discover the applications of physical laws to simple systems which are the basis of many tools and machines.
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, and
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading on
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, and
examination)	Simple Physical Systems Discover the applications of physical laws to simple systems which are the basis of many tools and machines. Discovery of University Work Methods Discover work and how to work at a university level, and learn its different aspects such as writing and reading on traditional and digital media.
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading ontraditional and digital media.Environment
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading ontraditional and digital media.EnvironmentDiscover the environment and its relationship with
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading ontraditional and digital media.EnvironmentDiscover the environment and its relationship withhumans as well as pollution and its multiple sources
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading ontraditional and digital media.EnvironmentDiscover the environment and its relationship with
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading ontraditional and digital media.EnvironmentDiscover the environment and its relationship withhumans as well as pollution and its multiple sources
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading ontraditional and digital media.EnvironmentDiscover the environment and its relationship withhumans as well as pollution and its multiple sources
examination)	Simple Physical Systems Discover the applications of physical laws to simple systems which are the basis of many tools and machines.Discovery of University Work Methods Discover work and how to work at a university level, and learn its different aspects such as writing and reading on traditional and digital media.Environment Discover the environment and its relationship with humans as well as pollution and its multiple sources causing dangers to the environment and ecology.
examination)	Simple Physical Systems Discover the applications of physical laws to simple systems which are the basis of many tools and machines.Discovery of University Work Methods Discover work and how to work at a university level, and learn its different aspects such as writing and reading on traditional and digital media.Environment Discover the environment and its relationship with humans as well as pollution and its multiple sources causing dangers to the environment and ecology.Biotechnology
examination)	Simple Physical Systems Discover the applications of physical laws to simple systems which are the basis of many tools and machines.Discovery of University Work Methods Discover work and how to work at a university level, and learn its different aspects such as writing and reading on traditional and digital media.Environment Discover the environment and its relationship with humans as well as pollution and its multiple sources causing dangers to the environment and ecology.
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading ontraditional and digital media.EnvironmentDiscover the environment and its relationship withhumans as well as pollution and its multiple sourcescausing dangers to the environment and ecology.
examination)	Simple Physical SystemsDiscover the applications of physical laws to simplesystems which are the basis of many tools and machines.Discovery of University Work MethodsDiscover work and how to work at a university level, andlearn its different aspects such as writing and reading ontraditional and digital media.EnvironmentDiscover the environment and its relationship withhumans as well as pollution and its multiple sourcescausing dangers to the environment and ecology.
examination)	Simple Physical Systems Discover the applications of physical laws to simple systems which are the basis of many tools and machines. Discovery of University Work Methods Discover work and how to work at a university level, and learn its different aspects such as writing and reading on traditional and digital media. Environment Discover the environment and its relationship with humans as well as pollution and its multiple sources causing dangers to the environment and ecology. Biotechnology

Semester: 1

TE: Transversal

Distribution of the hourly volume of the TU and its materials	Course : 22h30 Tutorial series (TS) : - Practical Work (PW): - Personal work : 27h30
Credits and coefficients allocated to the TU and its subjects	TU: Coefficient = 1 Credit = 2 Subject: Langues étrangères 1 Credit : 2 Coefficient : 1
Evaluation method (continuous or examination)	Exam : 100%
Description of teaching subjects	Langues étrangères 1 : Anglais 1 ou Français 1 Acquire a scientific language culture and an ability to use oral presentation techniques.

²²²Semester: 2

TU : Fundamental

Distribution of the hourly volume of the TU and its materials	Course : 135h00 Tutorial series (TS) : 67h30 Practical Work (PW): - Personal work: 247h30
Credits and coefficients allocated to the TU and its subjects	FU:Coefficient = 9Crédits = 18Subject 1:Mathematics 2/ Analysis and Algebra 2Credits :6Coefficient :3Subject 2 :Physics 2/ ElectricityCredits :6Coefficient :3Subject 3 :Chemistry 2/ Thermodynamics andChemical KineticsCredits :Credits :6Coefficient :3
Evaluation method (continuous or examination)	Continuous : 33% ; Exam : 67%
Description of teaching subjects	 Mathematics 2/ Analysis and Algebra 2 Credits Mathematics 2 offers a high level of specialization in Analysis and Algebra such as integral calculus, solving differential equations, limited expansion and matrix calculus with many very useful applications for the physicist or chemist. Physics 2/ Electricity Physics 2 is the subject which teaches the basic formalisms in electricity and magnetism. Chemistry 2/ Thermodynamics and Chemical Kinetics Chemistry 2 allows the student to acquire the basic formalisms of thermodynamics and its fundamental principles introducing state functions such as enthalpy and entropy as well as chemical kinetics during chemical reactions.

Semester: 2

TU : Methodology

Distribution of the hourly volume of the TU and its materials	Course : 22h30 Tutorial series (TS) : - Practical Work (PW): 67h30 Personal work: 110h00
Credits and coefficients allocated to the TU and its subjects	TU : Coefficient = 4Crédits = 8 Subject 1: Practical work/PW Electricity Credits : 2 Coefficient : 1 Subject 2: Practical work/PW <u>Chemistry 2</u> Credits : 2 Coefficient : 1 Subject 3 : Computer science 2 / Programming languages Credits : 4 Coefficient : 2
Evaluation method (continuous or examination)	Continuous : 50% ; Exam : 50%
Description of teaching subjects	 Subject 1 : PW Electricity Manipulation of electrical measuring equipment and visualization of electrical phenomena and experimental verification of fundamental laws. Writing a practical work session report with report of the results and their interpretation. Subject 2 : PW <u>Chemistry 2</u> Experimentation with practical work in thermodynamics and chemical kinetics and preparation of practical work session reports with report of the results and their interpretation. Subject 3 : Computer science 2 / Programming languages Learn a computer programming language such as Fortran, Octave, or other preferably open source language. Creation of flowcharts and development of computer programs written in this language.

Semester : 2

TU: Discovery

Distribution of the hourly volume of the TU and its materials	Course : 22h30 Tutorial series (TS) : - <i>Practical work</i> PW: 22h30 Personal work : 27h30
Credits and coefficients allocated to the TU and its subjects	TU: Coefficient = 1 Credits = 2 One (01) subject to choose from:
	Subject 1: Chemistry through basicapplicationsCredits :2Coefficient :1
	Subject 2: Business Economics Credits : 2 Coefficient : 1
	Subject 3 : <i>History of science</i> Credits : 2 Coefficient : 1
	Subject 4: Renewable EnergiesCredits :2Coefficient :1
Evaluation method (continuous or examination)	Exam : 100%
Description of teaching subjects	Chemistry through basic applications Through applications of some basic notions of chemistry, certain concepts will be better assimilated Business Economics In construction !!
	<i>History of science</i> Very interesting subject which gives the student the opportunity to discover the evolution of sciences from Antiquity to the 20th century, and the scientists who marked time with their discoveries.
	Renewable Energies This subject introduces the student to other forms of so-called non-renewable or new energy such as solar energy, wind energy, biomass, etc.

Distribution of the hourly volume of the TU and its materials	Course : 22h30 Tutorial series (TS): - Practical work PW: - Personal work: 27h30
Credits and coefficients allocated to the TU and its subjects	TU: Coefficient = 1 Credit = 2 Subject: Foreign languages 2 Credit : 2 Coefficient : 1
Evaluation method (continuous or examination)	Exam : 100%
Description of teaching subjects	<i>Foreign languages 2: English 2 or French 2</i> Improved language acquisition and scientific writing skills.

III - Detailed program by subject (Detailed sheet per subject)

Semester 1 + Semester

Semester: 1 Teaching unit: Fundamental Course title: Mathematics 1/Analysis & Algebra 1

Teaching Objectives:

Of paramount importance for a scientist, this course allows students to acquire basic formalisms in mathematics for analysis and algebra and their applications.

Recommended Prerequisite Knowledge:

It is recommended to have a solid grasp of mathematics in secondary education.

Course content:

Analysis 1

Set theory.

Applications: direct image, inverse image, injection, surjection, and bijection.

Equivalence relations, Order relations. Structure of the field of real numbers on IR:

Total order relation on IR, absolute value, interval, bounded set, reasoning by recurrence.

Real functions of one real variable:

Domain of definition, function composition, periodic functions, even functions, odd functions, bounded functions, function variations. Function limits: Limit definition, right-hand limit, left-hand limit, infinite limits, limits at infinity, indeterminate forms, algebraic operations on limits, limit of a composite function. Continuous functions: Continuity definition at a point, right-hand continuity, left-hand continuity, continuity extension, algebraic operations on continuous functions, continuous function on an interval, intermediate value theorem, continuous monotonic functions. Reciprocal functions: Existence and properties, reciprocal trigonometric functions, hyperbolic functions.

Algebra 1

Recap: Laws of internal decomposition, groups, rings, and fields. Vector spaces. Bases and finite dimensions. Linear applications, kernel, image. Operations on linear applications, theorem on the range of a linear application.

Evaluation Method: Continuous assessment: 33% Exam: 67%

References (Books, lecture notes, websites, etc.):

- Elie BELORIZKY, Outils mathématiques à l'usage des scientifiques et des ingénieurs, EDP Sciences,

Paris, (2007).

- C. ASLANGUL, Des mathématiques pour les sciences2, Corrigés détaillés et commentés des exercices

et problèmes, De Boeck, Bruxelles (2013).

- F. COTTET-EMARD, Analyse : tome 1 cours et exercices corrigés, DeBoeck, Bruxelles (2005).
- P. PHILIBOSSIAN, Analyse: rappels de cours, exercices et problèmes résolus, Dunod Paris (1998).
- K. ALLAB, éléments d'analyse (Fonction d'une variable réelle). OPU Alger, (1986).
- J M Monier, Algèbre 1 : cours et 600 exercices corrigés, 2ème Ed., Dunod Paris (2000)
- C. BABA HAMED, Algèbre 1 : rappels de cours et exercices avec solutions, OPU (1992)
- G. CHRISTOL, Algèbre1 : ensembles fondamentaux arithmétique polynômes, Ellipses Paris, (1995).

- http:// www. les-mathématiques.net

Semester: 1 Teaching unit: Fundamental Course title: Physics 1/ Point mechanics Course code: F112

Teaching objectives

The teaching of this subject allows the student to acquire the fundamental notions of classical mechanics linked to the material point through kinematics, dynamics and the concepts of work and energy.

Recommended prior knowledge

It is recommended to have a good command of physical sciences in secondary school.

<u>Course content</u>:

1. Math reminders (2 weeks)

Dimensional equations - error calculations - Vectors

2. Point kinematics (2 weeks)

Rectilinear movement - Movement in space - Study of particular movements - Study of movements in different systems (polar, cylindrical and spherical) - Relative movements.

3. Point dynamics (5 weeks)

The principle of inertia and the Galilean frames of reference - The principle of conservation of momentum - Newtonian definition of force (3 Newton's laws) - Some laws of forces.

4. Work and energy in the case of a material point (5 weeks)

Kinetic energy - Gravitational and elastic potential energy - Force field - Non-conservative forces.

Evaluation method: Continuous: 33% Exam: 67%

<u>**Reférences**</u> (Books and handouts, websites, etc.) :

- T. HANNI, Mécanique générale cours et exercices, OPU (1996).
- J. TAYLOR, Mécanique classique, Ellipses, Paris, (2007)
- J TAYLOR, Incertitudes et analyse des erreurs dans les mesures physiques, Dunod, Paris, (2000).
- H. LUMBROSO, *Mécanique du point*, 1ère an. MPSI PCSI PTSI Problèmes résolus, Dunod, Paris (2002)
- D. TEYSSIER, Mécanique du point : exercices corrigés, Ed. Ellipses Paris, (2005)
- J. FAGET, J. MAZZASCHI, Travaux Dirigés de Physique Généralités, Ed. Vuibert Paris, (1970)
- J. FAGET, J. MAZZASCHI, Travaux Dirigés de Physique Mécanique, Ed. Vuibert Paris, (1970)

Semester: 1 Teaching unit: Fundamental Course title: Chemistry 1/ Structure of Matter

Objectives of the Course:

This course aims to provide students with the basic formalisms in chemistry, particularly within the context of describing atoms and chemical bonding, chemical elements, and the periodic table, along with energy quantification.

Recommended Prerequisites:

It is recommended that students have a solid understanding of physical sciences in secondary education.

Content of the Course:

Structure of the Atom

The nucleus-Atom, element, atomic mass- Radioactivity, nuclear reactions

Energy Quantification

Semi-atomic model-Bohr model -Limitations of the classical approach-Elements of quantum theory-Schrödinger's equation-Quantum numbers -Probability of presence-Hydrogen atom and hydrogenoids-Atomic orbitals- Electronic structure- Polyatomic atoms (Screening effect).

Periodic Classification of Elements

Periodicity (period and group)- Chemical properties (atomic radius, ionization energy, electron affinity, electronegativity).

Chemical Bonding

Classical model- Covalent bonding- Molecular orbitals- σ and π bonds- Energy diagram of molecules, bond order- Ionic bonding- Partial ionic character- Hybridization-Molecular geometry, Gillespie's method.

Evaluation Method:

Continuous Assessment: 33%- Exam: 67%

References (Books, Handouts, Websites, etc.):

M. FAYARD, "Structure électronique atomes et molécules simples," Hermann, France (1969). Y. JEAN, "Structure électronique des molécules: 1 de l'atome aux molécules simples 3ème Ed.," Dunod, Paris (2003).

M. GUYMONT, "Structure de la matière; Belin Coll.," Paris (2003).

G. DEVORE, "Chimie générale: T1, étude des structures," Coll. Vuibert Paris.

Semester: 1 Teaching unit: Methodology Course title: Practical Work (PW) / Mechanics

Objectives of the teaching

- Consolidation of theoretical knowledge acquired during the Mechanics of the point

(Physical1) with the application of error calculation.

- Learning and visualization of phenomena related to Classical Mechanics.

Previous knowledge recommended

- It is recommended to have mastered the physical sciences well in the secondary cycle.

Course content:

- 1- Error calculations
- 2- Verification of Newton's 2nd law
- 3- Physical pendulum study
- 4- Free fall
- 5- Simple pendulum
- 6- Maxwell's Pendulum
- 7- Study of the rotation of a solid
- 8- Verification of the fundamental of a circular motion conservation of energy mechanical

Evaluation mode:

Continuous evaluation: 50% Exam: 50%

<u>**References**</u> (Books and handouts, websites, etc.):

- T. HANNI, Mécanique générale cours et exercices, OPU (1996).
- J TAYLOR, Incertitudes et analyse des erreurs dans les mesures physiques, Dunod, Paris, (2000).
- H. LUMBROSO, Mécanique du point, 1 ère an. MPSI PCSI PTSI Problèmes résolus,
- F. FAGET, M. MAZZASCHI, Mécanique du point, Exercices corrigés, Ed. Dunod Paris, (1999).

Semester: 1 Teaching unit: Methodology Course title: Practical Work (PW) / Chemistry1

Teaching objectives:

Introduction to chemical manipulation, with adherence to safety rules. Learning elementary practical work in chemistry and the use of measurement equipment.

<u>Recommended Prior Knowledge:</u> It is recommended to have a good understanding of physical sciences in secondary education.

Course content:

- 1- Safety and Introduction to Chemical Manipulation
- 2- Preparation of a Solution
- 3- Determination of Molar Mass
- 4- Acid-Base Titrations
- 5- Redox Titrations

Evaluation Method: Continuous Assessment: 50% Exam: 50%

References (Books, Course Materials, Websites, etc.):

- Y. JEAN, Electronic Structure of Molecules: From Atom to Simple Molecules, 3rd Ed., Dunod, Paris, (2003).
- M. GUYMONT, Structure of Matter; Belin Coll., Paris, (2003).
- M. KARAPETIANTZ, Constitution of Matter, Ed. Mir, Moscow, (1980).

Semester: 1 Teaching unit: Methodology

Course title: Computer science 1/ Office automation & Web technology (5 weeks) + Introduction to Algorithmics (10 weeks)

Teaching objectives

Learn the basics of computers. Understand the concept of an algorithm and learn the methods of its construction (Algorithmics).

Recommended prior knowledge

Already have basic notions of mathematical logic.

Course content:

Office Automation & Web Technology (5 weeks)

- 1. Brief history of the evolution of computing
- 2. PC architecture: The different hardware components of the PC
- 3. Principle of operation of a computer
- 4. Introduction to operating systems
- 5. Introduction to networks: local network, Internet and Web

Introduction to Algorithmics (10 weeks)

1. Concept of algorithms: definition, syntax, structure of an algorithm, concept of variables, data types and assignment.

- 2. Entry and exit instructions
- 3. Control structures:
- Conditional structures: alternatives, multiple choices
- Iterative structures: Loops
- 4. Tables: vectors and matrices
- 5. Concept of modularity: function and procedure
- 6. Development of a complete algorithm: Process of solving any problem.
- 7. Applications: Calculations of sums and products, application to matrix calculations

Evaluation method: Continuous: 50% Examination: 50% **References** (Books and handouts, websites, etc.):

Semester: 1 Teaching unit: Discovery Course title: Simple physical systems

Teaching objectives

The teaching of this subject allows the student to discover the applications of fundamental physical laws to physical systems. These are the basis of many tools, machines, etc. encountered in everyday life

Recommended prior knowledge Have basic notions of physics

Course content:

I. Simple pendulumII. Oscillations and harmonic oscillatorIII. Periodicity and synchronizationsIV. Transfer of movements (pulley systems, etc.)V. From catapult to rocketsVI. Satellites

Evaluation method: Exam: 100%

Semester: 1 Teaching unit: Discovery Course title: Discovery of University Work Methods

Teaching objectives

The teaching of this subject allows the student to discover how to work or study at the University and learn its different aspects such as writing and reading on traditional and digital media.

Recommended prior knowledge

It is recommended to understand the French language

Course content:

- IV. The documentation
- 1. Classic documentation;
- 2. Audio-visual documentation;
- 3. Internet documentation;
- 4. The bibliography
- V. Learn to read

5. Use of the paratext of a magazine or book to check the relevance of the document in relation to the work to be carried out;

- 6. Learn to move through a work or document to identify the main argumentative elements;
- 7. Capitalization of knowledge (by reading sheets and by classification).
- VI. Taking notes
- 8. Reading notes;
- 9. Course or conference notes; 10. Abbreviations;
- 11. Note storage and use.
- VII. Writing a summary report
- 12. Some tips for writing;
- 13. Different types of texts for different intentions;
- 14. Writing strategies;
- 15. Writing an internship report;
- 16. Writing a dissertation
- VIII. Preparing an oral presentation

17. Oral Expression (Quality of expression, Degree of preparation of the presentation, Clarity of the presentation Respect of the allotted time, Clarity of the presentation);

- IX. Training of the future researcher
- 18. Know how to analyze a problem;
- 19. Recommend an action plan
- 20. Work in a community

Evaluation method: Exam: 100%

References (Books and handouts, websites, etc.):

D. Bertrand, H Azrour, Relearning to learn in college, university and in a work context: Management and mastery of transversal skills. Montreal: Guérin Universitaire (2004). D Chassé, R. Prégent. Prepare and give a practical guide presentation. Montreal: Éditions de l'École, (1990)

B. Dionne, To succeed: methodological guide for studies and research (4 ed.). Laval, Quebec: Beauchemin. (2004)

University of Quebec. Information Skills Development Program, (2007). http://pdci.uquebec.ca/. 43.

Establishment: University of Biskra

Semester: 1 Teaching unit: Discovery Course title: Environment

Teaching objectives

Discovery of the environment and the environmental system from an ecological aspect and by making known all the polluters and the dangers of the pollution caused.

Recommended prior knowledge: Basics in physical sciences

Course content:

I. The environment: definition and relationship with man Definition of environment. Applications, Elements of the environment and the environmental system Man and his role in the environment Effects of industrialization and modern technology on the environment II. Environmental pollution Pollution and its origins Sources of pollution Levels and types of pollution. III. Air pollution The atmosphere and atmospheric layers Importance of air for living beings Definition of Air Pollution and Sources of Air Pollution Dangers of Air Pollution Acid rains " Dangers of air pollution on the ozone layer Danger of the disappearance of the ozone layer on the environment Proposed solutions IV. Water pollution Distribution of water on the earth's surface and importance of water Areas of water exploitation Sources of water pollution Dangers of water pollution on human health V. Means of purifying polluted water Introduction Classification criteria for water treatment Classification of means of purifying sanitary water and VI. Biological degradation Introduction - Conventional biological means for the treatment of polluted water -Technical water purification stations in Algeria VII. Pollution of seas and oceans Introduction and sizes of the oceans Sources of sea pollution Importance of the seas and oceans Chemical pollution and the dangers inherent in this pollution of the seas and oceans Means of combating oil pollution VIII. Soil pollution Introduction and sources of soil pollution Dangers caused by polluted soils and means of combating them

Evaluation method: Exam: 100%

References (Books and handouts, websites, etc.): P BONTEMPS, G.ROTILLON, Environmental economics, Paris, La

Establishment: University of Biskra

Semester: 1 Teaching unit: Discovery Course title: Biotechnology

Objectifs de l'enseignement

Avec cette matière l'étudiant aura découvert de nouvelles sciences telles la biotechnologie et les sources de biotechnologie.

Connaissances préalables recommandées

Il est recommandé d'avoir bien maîtrisé les sciences physiques dans le cycle secondaire.

Course content:

I. Biotechnologie

Définition, Applications, le choix des matériaux à vocation de biomatériaux : métaux et alliages métalliques, les céramiques, les polymères et les matériaux d'origine naturelle

II. Biotechnologie chimique

Synthèse multi étapes de divers principes actif – Hémi et synthèse totale. Synthèse peptidique en phase solide et liquide des peptides bioactifs.

Caractérisation physico-chimique, vectorisation et étude du mode d'action des molécules bioactives -synthétiques ou non.

Mise en évidence, caractérisation et analyse du fonctionnement de différentes classes de récepteurs biologiques.

Etude d'interactions ligand-récepteur, applications. Catalyse enzymatique : principes et applications en chimie thérapeutiques.

III. Biotechnologie environnementale

Définition du concept de biorestauration, Les types de pollution, Mécanisme d'évolution d'une pollution, Caractères spécifiques de la dégradation des hydrocarbures, Les procédés de biorestauration, Les procédés Ex-situ.

Caractérisation des substances indésirables et toxiques, Composition des eaux résiduaires, Principaux paramètres de calcul, Techniques de traitement.

Le traitement des eaux par aérobiose. Principe et dimensionnement des stations d'épuration par boues activées. Les procédés de fermentation avec recyclage cellulaire.

Bilans de matière et cinétique microbienne appliquée à ce type de fermentation.

Mode d'évaluation : Examen : 100%

Références (Livres et polycopiés, sites internet, etc) :

Semester: 1 Teaching unit: Transversal Course title: Foreign languages 1

Teaching objectives

- Acquisition of a scientific language culture and the basics of everyday language
- Acquisition of skills in oral presentation techniques.

Recommended prior knowledge

It is recommended to have a good level of English/French

Course content of the material:

For English 1

- 1. Sentences
- 2. Tenses
- 3. Noun, Adjective, Article, Adverbs,...etc.
- 4. Introduction to phonetics and phonology
- 5. Speech mechanism
- 6. Sounds of English (vowels, diphthongs, consonants)
- 7. Transcription and classification

For French 1

- 1. Grammar
- 2. Conjugation
- 3. Spelling
- 4. Text studies
- 5. Readings

Evaluation method: Exam: 100%

References (Books and handouts, websites, etc.):

Semester: 2

Teaching unit: Fundamental Course title: Mathematics 2 / Analysis & Algebra 2

Teaching Objectives:

Of paramount importance for a scientist, this subject allows the student to acquire:

In the analysis part: methods for derivative and integral calculations, various forms of Taylor series, as well as methods leading to the solution of differential equations necessary for solving physics problems. In the algebra part: matrices and their properties as well as matrix calculus.

Recommended Prerequisite Knowledge: It is recommended to have a solid understanding of the fundamental basics of integral calculus, primitives, and mathematics taught in S1 of L1 in Material Sciences.

Course content:

Analysis / Differentiability: Definition of the derivative number, right-hand derivative, left-hand derivative, differentiable function on an interval, differential notion, geometric interpretation. Calculation of derivatives, derivatives of a composite function, derivative of an inverse function, calculation of successive derivatives, Rolle's theorem, mean value theorem, L'Hopital's rule. Taylor's formula, Mac-Laurin's formula. Taylor Series: Sum, product, quotient, integration, derivation, composition of Taylor series, table of usual Taylor series around the zero point. Primitives and Integrals: Primitive function, integration process, integration by parts, integration by change of variables, integration of rational functions, simple integrals. Double integrals, table of standard primitives. First-order differential equations. Functions with two variables.

Algebra/ Matrices. Matrix diagonalization. Determinants. Eigenvalues and eigenvectors. Systems of equations.

Evaluation mode: Continuous assessment: 33% Exam: 67%

References (Books, lecture notes, websites, etc.):

- Elie BELORIZKY, Outils mathématiques à l'usage des scientifiques et des ingénieurs, EDP Sciences, Paris, (2007).

- Walter APPEL, Mathématiques pour la physique et les physiciens!, 4ème Ed., H&K Edition, Paris, (2008).

- C. ASLANGUL, Des mathématiques pour les sciences, Concepts, méthodes et techniques pour la modélisation, De Boeck, Bruxelles (2011).

- C. ASLANGUL, Des mathématiques pour les sciences2, Corrigés détaillés et commentés des exercices et problèmes, De Boeck, Bruxelles (2013).

- Piskounov, Tome 2, Calcul différentiel et intégral, Ed. MIR, (1976).- http:// www. les-mathématiques.net

Semester: 2 Teaching unit: Fundamental Course title: Physics 2/ Electricity

Teaching Objectives:

The objective of teaching this subject is to provide the student with the basics of electricity and electromagnetism.

Recommended prior knowledge

It is recommended to master S1 mathematics (Analysis & Algebra 1).

Course content:

1. Electrostatics (4 weeks)

Electrostatic charges and field - Electrostatic potential - Electric field flow - Gauss's theorem - Electric dipole

2. The conductors (2 weeks)

Definition and properties of conductors in equilibrium - Electrostatic pressure - Capacitance of a conductor and a capacitor.

3. Electrokinetics (4 weeks)

Electrical conductor - Ohm's law - Joule's law - Electric circuits - Application of Ohm's law to networks - Kirchhoff's laws.

- 4. Magnetostatics (3 weeks) Lorentz force Laplace's law Biot and Savart's law Magnetic dipole.
- 5. Magnetic induction (2 weeks)

Evaluation method: Continuous: 33% Exam: 67%

References (Books and handouts, websites, etc.):

- Y. GRANJON; Electricity Exercises and Problems; Dunod, Paris, (2003)

- J L CAUBARRERE, Electricity and waves: courses and practical work OPU Algiers, (1986)

- Ediscience Collective: Physics in college: electrostatics and electrokinetics 1st and 2nd year; Ediscience international, (2010)

- M.-N. SANZ, D. CHARDON, F. VANDENBROUCK, B. SALAMITO, Physics all-in-one PC, PC*: corrected lessons and exercises; Dunod, Paris (2014)

- R. A. SERWAY, J. W. JEWETT, JR., A. DUCHARME, M. PériARD, Physics - Volume 2 Electricity and magnetism, Ed. De Boeck, (2013)

- D. FEDULLO, T. GALLAUZIAUX, Electricity: Installing it yourself, Ed. Eyrolles, (2012)

Semester: 2 Teaching unit: Fundamental Course title: Chemistry 2 / Thermodynamics & Chemical Kinetics

Objectives of the Teaching

The acquisition of basic formalisms of thermodynamics and its fundamental principles introducing thermodynamic quantities and state functions such as enthalpy and entropy, as well as the kinetics of chemical reactions.

Recommended Prerequisite Knowledge

It is recommended to have a mastery of the mathematics from Semester 1 (Analysis & Algebra 1).

Course content:

Generalities on thermodynamics: system, state of a system, variables, and state functions. Notions of equilibrium and transformation of a system. Concept of temperature. Different forms of energy. Ideal gas equation.

First Law of Thermodynamics: Internal energy, work, heat. Statement of the first law. Differential expression of the first law. Application: transformation of an ideal gas (isochoric, isothermal, isobaric, adiabatic). Chemical systems; reaction heat, bond energy. Examples of application to physical systems. **Second Law of Thermodynamics:** Natural evolutions. Notions of entropy and free enthalpy, heat engines. Chemical equilibria. Law of mass action, equilibrium constant. Equilibrium factors. Statement of the third law.

Introduction to chemical kinetics: Definition of the rate of a reaction. Main factors influencing the rate of chemical reactions, concentration, temperature. Integrated rate laws.

Evaluation Method: Continuous assessment: 33% Exam: 67%

References (Books and lecture notes, websites, etc.):

- T. BECHERRAWY, Vibrations et Ondes, Tomes 1-4, Ed. Hermes-Lavoisier, (2010).

- H. DJELOUAH, Vibrations et Ondes Mécaniques, OPU, (2011).

- J. BRUNEAUX, Vibrations et Ondes, Ed. Marketing, (2010).

- Y. GRANJON, Exercices et problèmes d'électricité, Dunod, Paris, (2003).

- L. BOREL, D. FAVRAT, Thermodynamique et énergétique, Vol.1.de l'Energie à l'Exergie, PPUR, Collection Mécanique, (2011)

- J-N. FOUSSARD, S. MATHE, Thermodynamique - Bases et applications, Cours et exercices corrigés, 2ème Ed. Dunod, (2010)

- R. MAUDUIT, Thermodynamique en 20 fiches, Ed. Dunod, (2013)

Semester: 2 Teaching unit: Methodology Course title: Practical Work (PW) / Electricity

Objectives of the teaching

- Consolidation of theoretical knowledge on Electricity.
- Learning and visualization of phenomena related to Electricity.

Previous knowledge recommended

It is recommended to have completed the practical work taught in S1 and to have mastered the physical sciences in the secondary cycle.

Course content:

- 1- Field and potential measurement (rheographic tank)
- 2- Electrical circuits (Ohm's Law, association and measurement of resistors)
- 3- Wheatstone Bridge
- 4- Oscilloscope and current generator (transformer)
- 5- Capacitors (association and measurement of capacitors, Charge discharge)
- 6- Verification of the law of Biot and Savart
- 7- Determination of the Earth's magnetic field

Evaluation mode:

Continuous evaluation: 50% Exam: 50%

- References (Books and handouts, websites, etc.) :
- J L CAUBARRERE, Electricité et ondes : cours et travaux pratiques OPU Alger, (1986)
- A. BENTOUNSI, Electricité générale: T2, Exercices résolus, OPU, Alger, (1992)
- Collectif Ediscience : La physique en fac : électrostatique et électrocinétique 1ère et 2ème année ;
 Ediscience international, (2010)
- D. FEDULLO, T. GALLAUZIAUX, Electricité : Réaliser son installation par soi-même, Ed.
 Eyrolles, (2012)
- De H. LARGEAUD, Le schéma électrique, Ed. Eyrolles, (2006)

Establishment: University of Biskra

Semester: 2 Teaching unit: Methodology

Course title: Practical Work (PW) / Chemistry 2

Teaching objectives:

Consolidation of theoretical knowledge on thermodynamics. Learning and visualization of phenomena related to thermodynamics.

Recommended Prior Knowledge:

It is recommended to have completed the practical work taught in S1 and to have a mastery of physical sciences in secondary education.

Course content: Thermodynamics

- 1- Measurement of the heat capacity of liquids
- 2- Thermodynamic properties of Ideal Gases (GP)
- 3- Measurement of the ratio of specific heats of a gas
- 4- First law of thermodynamics Kinetics
- 5- Inversion of sucrose
- 6- Ester saponification (order 2)
- 7- Decomposition of hydrogen peroxide.

Evaluation Method: Continuous Assessment: 50% Exam: 50%

References (Books, Course Materials, Websites, etc.):

- R. MAUDUIT, Thermodynamics in 20 Sheets, Ed. Dunod, (2013)
- B. FREMAUX, Elements of Kinetics and Catalysis, Ed. Tec. & Doc, (1989).
- B. DIU et al, Thermodynamics, Editions Hermann, Paris, (2007).

Semester: 2 Teaching unit: Methodology Course title: Computer Science 2/ Programming Language

Teaching objectives

Mastery of computer tools through the teaching of advanced programming languages and the design of simple computer codes.

Recommended prior knowledge

It is recommended to be proficient in using the computer,

Course content:

The language refers to: C language, Fortran, Octave, Silab, Matlab, Mathematica,.....

- 1- Presentation of Language 2- Rules of language
- 3- Elementary operations
- 4- Control structures (loops, conditions, etc.) 5- Inputs/Outputs
- 6- Concept of subprogram (function or subroutine, etc.) 7- Matrices (vectors, tables, etc.)
- 8- Graphics

9- External program calls,

Evaluation method: Continuous: 50% Examination: 50%

Références (Livres et polycopiés, sites internet, etc) :

For MATLAB

- M. DJEBLI & H. DJELOUAH, Initiation à MATLAB, OPU, (2013).

- R. DUKKIPATI, MATLAB, an introduction with applications, New Age International Publishers, India, (2010).

- C. WOODFORD and C. Phillips, Numerical methods with worked examples: MATLAB edition, 2nd Ed. Springer Ltd, (2013).

For C et C++

- C. DELANNOY, ''C++ pour les programmeurs C'', 6ème Ed., Eyrolles, Paris, (2004).

- C. CASTEYDE, ''Cours de C/C++'', Copyright, (2005).

For FORTRAN

- B. HAHN, "Introduction to Fortran 90 for scientists and engineers", Capetown University, South Africa, (1993).

- Ph. D'Anfray, 'Fortran 77'', Université Paris XIII, (1998).

- P. CORDE et A. FOUILLOUX, Langage Fortran, Support de cours, IDRIS, (2010).

- S. LIPSCHUTZ, Programmation fortran : Théorie et Applications /

Establishment: University of Biskra

Semester: 2 Teaching unit: Discovery Course title: Chemistry through basic applications

Teaching objectives

Teaching this subject allows the student to discover the applications of some basic notions of chemistry. These applications will allow the deepening of certain concepts through productions which may possibly call upon demonstrations by video presentation,

Recommended prior knowledge

Have basic notions of chemistry

Course content:

- 1. Permanent and temporary coloring
- 2. Cryogenics
- 3. Non-missible fluids
- 4. Volcano and spontaneous eruptions
- 5. Superfluids
- 6. Carbon: same atom different materials

Evaluation method: Exam: 100%

Semester: 2 Teaching unit: Discovery Course title: Business economics

Teaching objectives Teaching this subject allows the student to discover the field of business in general.

Recommended prior knowledge

It is recommended to be proficient in mathematics

Course content:

Subject: Enterprise economics Enterprise concept The institution and the environment Organization of the institution Enterprise functions Economic analysis tools for the institution Enterprise growth patterns

Evaluation Mode: Examination: 100%

References (Lives and copies, internet sites, etc.)

المراجع:

1- إقتصاد المؤسسة ناصر دادي عدون ديوان المطبوعات الجامعية الجزائر

2- الإتصال وإتخاذ القرارات فريد كورتل دار كنوز المعرفة عمان الأردن 2011

Semester: 2 Teaching unit: Discovery Course title: History of Science

Teaching objectives

The objective of this module is to understand civilizations and the evolution of the human mind through the ages, to follow the different stages of the formation of scientific concepts and to improve the content of knowledge and its transmission to learners.

I. Appearance of science, its characteristics

a) Birth and development of scientific activities

b) Interaction between science and society

II. Science in ancient civilizations

a) Content of sciences in Babylonian civilization (medicine, astronomy, mathematics, botany)

b) Content of sciences in ancient Egyptian civilization (medicine, astronomy, mathematics, architecture, chemistry)

c) Some aspects of Indian and Chinese civilization.

III. Sciences in Greek civilization

a) Greek philosophical schools

b) Euclid and the book of elements

c) Diophantus and the science of number

d) Ptolemy and astronomy

e) Archimedes and the infinitesimal method

f) Apollonius and the conics

g) Hippocrates and medical sciences

IV. . Sciences in Arab civilization

a) Translation into Arabic of scientific works written in various languages

b) Algebra or the birth of a new discipline

c) Experimental sciences among the Arabs (mechanics, optics, chemistry, botany, agriculture, medicine, etc.)

V. Sciences in European civilization

a) Translation into Latin of Arabic scientific works and circulation of Greek and Arabic sciences in Europe.

b) Introduction to the Renaissance period in Europe (Fibonacci, Leonardo da Vinci, Cardan, Galileo, Copernicus)

c) Introduction to the period of the scientific revolution in Europe (Pascal, Descartes, Leibniz, Newton).

Evaluation method: Exam: 100%

Semester: 2 Teaching unit: Discovery Course title: Renewable Energies

Teaching objectives

With this subject the student will have discovered the fabulous world of physics.

Recommended prior knowledge Know the physical sciences of the first year SM.

Course content:

General information on energy: Energy?, History of energy and the energy cycle on earth Physical quantities and notions of thermodynamics

The world and energy – Non-renewable energies and the global situation, energy challenges, Energy efficiency, Energy security,

Renewable energies around the world Solar energy

Photothermal solar energy Photovoltaic solar energy Solar energy storage

Wind power ; The biomass

Ocean energy (conversion of thermal energy, waves, tides, ocean currents, environmental impact), Hydro-electric power,

Geothermal energy (availability, low, medium and high enthalpy reservoir), Hydrogen (Production and storage, fuel cells, environmental impact) Operation and interconnection of a solar energy source on the electricity grid. Fuel cells, micro turbines, micro and nano energy plants; The energies of the future

Evaluation method: Exam: 100%

References (Books and handouts, websites, etc.):

G, Boyle. Renewable Energy, 2nd ed., Oxford, (2004)

A. V, Da Rosa, Fundamental of Renewable Energy Processes, Elsevier Academic Press, (2005)

J. H. Kunstler, The end of oil: The real challenge of the 21st century, Plon, (2005).

B. Sorenson, Renewable Energy Conversion, Transmission, and Storage, Elsevier Academic Press, (2008)

B. Wu, N. Zargari, S. Kouro, Power Conversion and Control of Wind Energy Systems, Wiley, (2011).

http://www.mrnf.gouv.qc.ca/energie/statistiques/statistiques-consommation-energie.jsp http://www.mrnf.gouv.qc.ca/publications/energie/strategie/strategie-energetique-2006 -2015.pdf www.energybulletin.net

Semester: 2 Teaching unit: Transversal Course title: Foreign languages 2

Teaching objectives

Improved language acquisition and scientific writing skills.

Recommended prior knowledge

It is recommended to have a good level of English/French

Course content:

For English 2

- 1. Grammar
- 2. Translation English-French and French-English
- 3. Scientific articles
- 4. Scientific reviews

For French 2

- 1. Introduction to scientific writing
- 2. French-speaking authors
- 3. Illustrated works
- 4. Scientific article in French
- 5. Scientific work in French

Evaluation method: Exam: 100%

References (Books and handouts, websites, etc.):

الجمهورية الجزائرية الديمقراطية الشعبية PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

وزارة التعليم العالي و البحث العلمي MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

National Pedagogical Committee of the Field

Science of matter (NPCF-SM)

L2- Chemistry

April 30, 2018

		Subjects			Weekly HV			SHV		Evaluation method	
Teaching Unit	Code	Title	Credits	Coefficient	Lectures	TS	PW	(15 Week)	Other *	Continuous assessment	Final exam
	F121	Mineral Chemistry	6	3	3h00	1h30		67h30	82h50	33%	67%
Fundamental TU Code : FTU12	F122	Organic chemistry 1	6	3	3h00	1h30		67h30	82h50	33%	67%
Credits : 20 Coefficient:10	F123	MathématiquesAppliquées	4	2	1h30	1h30		45h00	55h00	33%	67%
coefficient: 10	F124	Vibrations, Waves and Optics	4	2	1h30	1h30		45h00	55h00	33%	67%
Methodology TU	M121	PC Mineral Chemistry	2	1			1h30	22h30	27h50	50%	50%
	M122	PC Organic Chemistry	2	1			1h30	22h30	27h50	50%	50%
Code : MTU12 Credits : 07 Coefficient:04	M123	Numerical Methods and Programming	3	2	1h30		1h30	45h00	30h00	50%	50%
Discovery TU Code : TUD12 Credits : 02 Coefficient:02	D121	Physico-chemical analysis techniques I	2	2	1h30	1h30		45h00	05h00	50%	50%
Fransversal TU Code : TTU12 Credits : 01 Coefficient:01	T121	English 3	1	1	1h00			15h00	10h00		100%
	Total	Semestr 3	30	17	13h00	07h30	04h30	375h00	375h00		

Semester 3-

L2- Chemistry - Field «Science of matter»; branch «Chemistry»

Other*: additional work in biannual consultation

		Subjects		Coefficient	Wee	ekly HV		SHV		Evaluation method	
Teaching Unit	Code	Title	Credits	Coeffi	Lectures	TS	PW	(15 Week)	Other *	Evaluation Evaluation Continuous assessment 33% 33% 33% 33% 50% 50% 50%	Final exam
	F221	Organic chemistry 2	6	3	3h00	1h30		67h30	82h50	33%	67%
Fundamental TU Code : FTU22	F222	Thermodynamic and chemical kinetics	6	3	3h00	1h30		67h30	82h50	33%	67%
Credits : 20 Coefficient:10	F223	Analytical chemistry	4	2	1h30	1h30		45h00	55h00	33%	67%
	F224	Quantum chemistry	4	2	1h30	1h30		45h00	55h00	33%	67%
TU Methodology Code : TUM22 Credits : 07	M221	TP Analytical chemistry	2	1			1h30	22h30	27h50	50%	50%
	M222	TP Thermodynamic and chemical kinetics	2	1			1h30	22h30	27h50	50%	50%
Coefficient:04	M223	Inorganic chemistry	3	2	1h30		1h30	45h00	30h00	50%	50%
Discovery TU Code : DTU22 Credits : 02 Coefficient:02	D221	Physico-chemical analysis techniques II	2	2	1h30	1h30		45h00	05h00	50%	50%
Transversal TU Code : TTU22 Credits : 01 Coefficient:01	T221	English 4	1	1	1h00			15h00	10h00		100%
	Tota	l Semestr 4	30	17	13h00	07h30	04h30	375h00	375h00		

Other*: additional work in biannual consultation

الجمهورية الجزائرية الديمقراطية الشعبية PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

وزارة التعليم العالي و البحث العلمي MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

National Pedagogical Committee of the Field

Science of matter (NPCF-SM)

L3 Pharmaceutical chemistry

Field	Branch	Speciality
Science of matter	Chemistry	Pharmaceutical chemistry

Semester 5 :

L3 Pharmaceutical Chemistry - Field «Science of matter»; branch «Chemistry»

Teaching Unit	Subjects		Credits	Coefficient	Weekly HV			SHV (15 Week)	Other *	Evaluation method	
	Code	Title	Cre	Coeff	Lectures	TS	PW	(10 Week)		Continuous assessment	Final exam
Fundamental TU	F131	Spectroscopic methods of analysis	6	3	3h00	1h30		67h30	82h30	33%	67%
Code : FTU13 Credits : 18 Coefficient : 09	F132	Advanced organic chemistry 1	6	3	3h00	1h30		67h30	82h30	33%	67%
	F133	Pharmaceutical organic chemistry	6	3	3h00	1h30		67h30	82h30	33%	67%
Methodology TU Code : MTU13 Credits : 09 Coefficient : 06	M131	Pharmacology-Toxicology	3	2			1h30	22h30	52h30	50%	50%
	M132	Electrochemical methods of analysis	3	2			1h30	22h30	52h30	50%	50%
	M133	(only one subject to choose) -PW Synthesis of organic intermediates for bioactive molecules -PW Electrochemistry	3	2			1h30	22h30	52h30	50%	50%
Discovery TU Code : DTU13 Crédits : 02 Coefficient : 01	D131	Introduction to Medical Knowledge.	2	1	1h30			22h30	27h30		100%
Transversal TU Code : TTU13 Crédits : 01 Coefficient : 01	T131	Entrepreneurship	1	1	1h30			22h30	02h50		100%
	Tota	Semester 5	30	17	12h00	04h30	04h30	315h00	435h00		

Other*: additional work in biannual consultation

Semester 6 :

L3 Pharmaceutical Chemistry - Field «Science of matter»; branch «Chemistry»

Teaching Unit	Subjects			Coefficient	Week	ly HV		SHV (15 Week)	Other *	Evaluation method	
	Code	Title	Credits	Coeff	Lectures	TS	PW	()		Continuous assessment	Final exam
Free damental TH	F231	Advanced organic chemistry 2	6	3	3h00	1h30		67h30	82h30	33%	67%
Fundamental TU Code : FTU23	F232	Separation methods	4	2	1h30	1h30		45h00	55h00	33%	67%
Credits : 18	F233	Quantitative analysis methods	4	2	1h30	1h30		45h00	55h00	33%	67%
Coefficient : 09	F234	Structural biochemistry	4	2	1h30	1h30		45h00	55h00	33%	67%
	M231	Molecular modeling	4	2	1h30		1h30	45h00	55h00	100%	-
Methodology TU	M232	Galenic pharmacy	3	2			1h30	22h30	52h30	100%	-
Methodology TU Code : MTU23 Credits : 09 Coefficient : 05	M233	(only one subject to choose) -PW Biochemistry -PW separation methods applied to products pharmaceuticals	2	1			1h30	22h30	27h30	100%	-
Discovery TU Code : DTU23 Credits : 02 Coefficient : 02	D231	Good Manufacturing Practices (GMP) and Good Laboratory Practices (GLP)	2	2	1h30			22h30	27h30		100%
Transversal TU Code : TTU23 Credits : 01 Coefficient : 01	T231	<u>(only one subject to choose)</u> - Ethics and Deontology - Technical English	1	1	1h30			22h30	02h50		100%
	Total	Semester 6	30	17	12h00	06h00	04h30	337h50	412h50		

Other*: additional work in biannual consultation